97 research outputs found

    The Shield that Never Was: Societies with Single-Peaked Preferences are More Open to Manipulation and Control

    Get PDF
    Much work has been devoted, during the past twenty years, to using complexity to protect elections from manipulation and control. Many results have been obtained showing NP-hardness shields, and recently there has been much focus on whether such worst-case hardness protections can be bypassed by frequently correct heuristics or by approximations. This paper takes a very different approach: We argue that when electorates follow the canonical political science model of societal preferences the complexity shield never existed in the first place. In particular, we show that for electorates having single-peaked preferences, many existing NP-hardness results on manipulation and control evaporate.Comment: 38 pages, 2 figure

    Modal Logics with Hard Diamond-free Fragments

    Full text link
    We investigate the complexity of modal satisfiability for certain combinations of modal logics. In particular we examine four examples of multimodal logics with dependencies and demonstrate that even if we restrict our inputs to diamond-free formulas (in negation normal form), these logics still have a high complexity. This result illustrates that having D as one or more of the combined logics, as well as the interdependencies among logics can be important sources of complexity even in the absence of diamonds and even when at the same time in our formulas we allow only one propositional variable. We then further investigate and characterize the complexity of the diamond-free, 1-variable fragments of multimodal logics in a general setting.Comment: New version: improvements and corrections according to reviewers' comments. Accepted at LFCS 201

    Complexity of Manipulative Actions When Voting with Ties

    Full text link
    Most of the computational study of election problems has assumed that each voter's preferences are, or should be extended to, a total order. However in practice voters may have preferences with ties. We study the complexity of manipulative actions on elections where voters can have ties, extending the definitions of the election systems (when necessary) to handle voters with ties. We show that for natural election systems allowing ties can both increase and decrease the complexity of manipulation and bribery, and we state a general result on the effect of voters with ties on the complexity of control.Comment: A version of this paper will appear in ADT-201

    The Complexity of Computing Minimal Unidirectional Covering Sets

    Full text link
    Given a binary dominance relation on a set of alternatives, a common thread in the social sciences is to identify subsets of alternatives that satisfy certain notions of stability. Examples can be found in areas as diverse as voting theory, game theory, and argumentation theory. Brandt and Fischer [BF08] proved that it is NP-hard to decide whether an alternative is contained in some inclusion-minimal upward or downward covering set. For both problems, we raise this lower bound to the Theta_{2}^{p} level of the polynomial hierarchy and provide a Sigma_{2}^{p} upper bound. Relatedly, we show that a variety of other natural problems regarding minimal or minimum-size covering sets are hard or complete for either of NP, coNP, and Theta_{2}^{p}. An important consequence of our results is that neither minimal upward nor minimal downward covering sets (even when guaranteed to exist) can be computed in polynomial time unless P=NP. This sharply contrasts with Brandt and Fischer's result that minimal bidirectional covering sets (i.e., sets that are both minimal upward and minimal downward covering sets) are polynomial-time computable.Comment: 27 pages, 7 figure

    Sparse reduces conjunctively to tally

    Get PDF

    Very Hard Electoral Control Problems

    Full text link
    It is important to understand how the outcome of an election can be modified by an agent with control over the structure of the election. Electoral control has been studied for many election systems, but for all studied systems the winner problem is in P, and so control is in NP. There are election systems, such as Kemeny, that have many desirable properties, but whose winner problems are not in NP. Thus for such systems control is not in NP, and in fact we show that it is typically complete for Σ2p\Sigma_2^p (i.e., NPNP{\rm NP}^{\rm NP}, the second level of the polynomial hierarchy). This is a very high level of complexity. Approaches that perform quite well for solving NP problems do not necessarily work for Σ2p\Sigma_2^p-complete problems. However, answer set programming is suited to express problems in Σ2p\Sigma_2^p, and we present an encoding for Kemeny control.Comment: A version of this paper will appear in the Proceedings of AAAI-201

    More Natural Models of Electoral Control by Partition

    Full text link
    "Control" studies attempts to set the outcome of elections through the addition, deletion, or partition of voters or candidates. The set of benchmark control types was largely set in the seminal 1992 paper by Bartholdi, Tovey, and Trick that introduced control, and there now is a large literature studying how many of the benchmark types various election systems are vulnerable to, i.e., have polynomial-time attack algorithms for. However, although the longstanding benchmark models of addition and deletion model relatively well the real-world settings that inspire them, the longstanding benchmark models of partition model settings that are arguably quite distant from those they seek to capture. In this paper, we introduce--and for some important cases analyze the complexity of--new partition models that seek to better capture many real-world partition settings. In particular, in many partition settings one wants the two parts of the partition to be of (almost) equal size, or is partitioning into more than two parts, or has groups of actors who must be placed in the same part of the partition. Our hope is that having these new partition types will allow studies of control attacks to include such models that more realistically capture many settings
    • …
    corecore